
J .  Fluid Mech. (1993), vol. 248, pp.  477491 
Copyright 0 1993 Cambridge University Press 

477 

Boundary mixing in stratified reservoirs 
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Centre for Water Research, University of Western Australia, Nedlands 6009, Australia 

(Received 14 August 1991 and in revised form 10 October 1992) 

We consider the steady flow driven by turbulent mixing in a benthic boundary layer 
along a sloping boundary in the general case of a non-uniform background density 
gradient. The velocity and density fields are decomposed into barotropic and 
baroclinic components, and a solution is obtained by taking an expansion in the 
small parameter A ,  the aspect ratio of the boundary layer defined as the thickness 
divided by the alongslope length. The flow in the boundary layer is governed by a 
balance between alongslope baroclinic and barotropic density fluxes. A number of 
flow regimes can exist, and we show that in the regimes relevant to lakes and 
reservoirs, the barotropic flow is divergent and drives an exchange flow between the 
boundary layer and the interior. This leads to changes in the interior density gradient 
which are significant when compared to field observations. 

1. Introduction 
An important aspect of parameterizing the basin-scale mixing in density-stratified 

water bodies such as lakes and oceans is to quantify the effects of the energetic 
turbulent mixing occurring near the sloping bottom boundaries. Munk (1966) was 
the first to suggest that much of the apparent vertical mixing occurring in the deep 
ocean basins may be the result of mixing occurring on the sloping bottoms followed 
by some adjustment process whereby mixed fluid is conveyed into the interior, 
ultimately resulting in apparent vertical mixing in the interior. This suggestion has 
subsequently been investigated in field observations (Armi 1978 ; Gregg & Sanford 
1980; Thorpe 1987; Imberger 1989; Ledwell & Watson 1991), in laboratory 
experiments (Ivey & Corcos 1982 ; Phillips, Shyu & Salmun 1986 ; Ivey 1987 ; Ivey & 
Nokes 1989) and analytical and numerical studies (e.g. Eriksen 1985 ; Garrett 1990 ; 
Woods 1991 ; Salmun, Killworth & Blundell 1991). 

Many studies have investigated particular mechanisms likely to be responsible for 
driving mixing at  the boundaries of stratified fluids. The candidates are either mean 
flows over the hydraulically rough bottom or, more likely, mixing driven by the 
breaking of internal waves on or near the sloping bottom boundaries (e.g. Eriksen 
1985; Gilbert & Garrett 1989; Ivey & Nokes 1989). From the point of view of overall 
mixing, the consequences of any mixing at the boundaries will be the same: the 
generation of a density anomaly between the turbulent boundary region and the 
quiescent interior which will result in an adjustment process. 

The initial laboratory experiments (Ivey & Corcos 1982; Thorpe 1982) used grid 
stirring to simulate the boundary mixing in containers with vertical sidewalls. 
Stratification confined the turbulence to the boundary regions, and because of 
either the finite depth of the laboratory tank or of variations in the strength of the 
buoyancy frequency N with depth, as in the case of a two-layer stratification for 
example, the resulting along boundary turbulent buoyancy flux was divergent. This, 
in turn, created a density anomaly between the fluid in the turbulent boundary layer 
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and the quiescent interior, resulting in a horizontal outflow. In the confined geometry 
of the laboratory tank, an overall circulation was set up with a slow vertical 
advection in the interior weakening the interior density gradient, a temporal 
evolution which Woods (1991) has shown can be described by a similarity solution 
for the case with steady mixing at  the boundaries. 

These initial laboratory studies have been extended to include the effects of both 
rotation and sloping sides. Ivey (1987) incorporated the effects of rotation by using 
a vertically oscillating grid to drive mixing in the centre of a cylindrical tank 
filled with a stratified fluid and mounted on a rotating turntable. While the dynamics 
of mixing in the turbulent boundary layer which formed near the oscillating grid 
were unaffected by rotation, the resulting horizontal outflow into the quiescent 
interior was strongly influenced by the rotation. Rather than a geostrophic balance 
with azimuthal currents developing around the boundary, the outflow was unstable 
to rotational instabilities of transitional character between the barotropic and 
baroclinic regimes. The instabilities rapidly grew and subsequently broke down to 
form an eddy field which efficiently stirred fluid pumped out of the boundary layer 
over the horizontal width of the tank. The combined effects of the continual mixing 
at the boundary and the eddy stirring in the interior again lead to a weakening of the 
interior density gradient. 

While these experiments considered only vertical sides, Phillips (1970) and 
Wunsch (1970) had earlier considered the effects of a sloping bottom in a container 
with a uniform stratification and a uniform diffusivity throughout the flow field. In 
order to satisfy the no-flux condition a t  the boundary, the isopycnals must bend near 
the boundaries so that the gradient normal to the wall vanishes, and the resulting 
buoyancy forces drive a net flow up the slope. The magnitude of this flow can be 
evaluated directly by consideration of the flux balances in the control volume shown 
in figure 1.  For steady state 

convective flux in - convective flux out = diffusive flux out, 

q = 6 cote. 

Thus the strength of the flow q up the boundary is directly proportional to the 
interior diffusivity E .  In  lakes this interior diffusivity is essentially molecular (e.g. 
Imberger 1989) and thus the flow q up the slope is very weak. Thorpe (1987) extended 
the solution to incorporate the effects of rotation and, while rotation does induce an 
alongslope flow outside the boundary layer, the upslope flow is still given by the 
above equations and.is thus vanishingly small if the interior diffusivity is molecular 
or near-molecular. 

The laboratory experiment of Phillips et al. (1986) and Salmun & Phillips (1992) 
used an oscillating grid to create a turbulent region along the sloping bottom 
boundary. As in the case of the vertical wall experiments, the stratification confined 
the turbulent region to the vicinity of the bottom slope and the authors suggested 
that the alongslope flow in this region became bi-directional- upslope close to the 
boundary and downslope outside - although the net volume flux associated with this 
secondary or baroclinic flow was zero. The shear in this baroclinic flow normal to the 
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FIGURE 1. Schematic of diffusively driven transport q along a sloping boundary. 

boundary does, however, lead to a shear flow dispersive transport along the slope. In  
the case where the background stratification was non-uniform, as when a pycnocline 
was present, this alongslope dispersive transport created density differences between 
the boundary regions and the interior and a mean or barotropic flow resulted. This 
barotropic flow was convergent at  the pycnocline and lead to an intruding flow from 
the boundary layer into the interior. No quantitative observations were made of 
either this baroclinic flow or of the convergent barotropic flow to support these ideas, 
and observations were confined to measurements of the temporal evolution of the 
interior stratification. 

Garrett (1990, 1991) examined the steady baroclinic or secondary flow for the case 
of uniform stratification and argued that the total alongslope buoyancy flux in this 
unidirectional flow situation consisted of both a shear-driven dispersive component, 
as described by Phillips et al. (1986), and a direct diffusive component. He concluded 
that the total flux could in fact be less than the value given by the turbulent diffusive 
flux acting alone, where the degree of reduction depends on the relative thickness of 
the buoyancy boundary-layer scale S and the thickness of the region h over which the 
eddy coefficients decreased from their value on the boundary to the assumed zero 
value in the interior. If h/S was greater than 1, then the total flux approached that 
given by the alongslope turbulent diffusive term acting alone. In all cases considered, 
there was either no barotropic flow or the barotropic flow was constant along the 
boundary (e.g. Young & Jones 1991) and thus there was no exchange flow between 
the boundary layer and the quiescent interior. 

Salmun et al. (1991) extended these one-dimensional models by considering the 
steady two-dimensional flow along a sloping bottom with a turbulent bottom 
boundary layer. Ignoring the effects of rotation, they considered the nature of the 
flow when the background linear stratification was perturbed by some arbitrary, but 
assumed small, amount about a uniform value. At zeroth order, their problem is 
essentially a balance between buoyancy and viscous forces, as considered by Phillips 
(1970), Thorpe (1987) and Garrett (1990), with the property that if the stratification 
is uniform there is no exchange flow between the boundary layer and the interior. A t  
the next order, they argued that the problem becomes a three way balance between 
inertia, buoyancy and viscosity and a series of numerical solutions were presented for 
varying boundary-layer thicknesBes, scale height of the stratification and turbulent 
difisivities in the boundary layer. The solutions yielded insight into the character 
of the two-dimensional flow, but the relative magnitudes of the baroclinic and 
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barotropic velocities, the basic force balances that prevail, and the range of validity 
of the solutions were not clear. 

All these studies considered steady flows and the unsteady aspects of boundary 
mixing have only recently received attention (e.g. Garrett 1991). In the rotating case, 
in addition to the effect on interior stratification, boundary mixing influences the 
interior velocity field and MacCready & Rhines (1991) showed that once Thorpe’s 
(1987) steady solution for the alongslope flow was established, the velocity outside 
the boundary layer slowly diffused into the interior. In terms of the boundary-layer 
properties themselves, the field observations of Thorpe, Hall & White (1990) 
indicated that temporal variability of the mixing was likely, although such 
considerations are beyond the scope of the present study. 

Motivated by observations from a recent field experiment in Lake Argyle, in $2 
below we extend this earlier work and describe a fully analytical two-dimensional 
model to describe the flow on a sloping bottom boundary in a stratified fluid. We 
consider only steady flows and ignore the effects of rotation in such relatively small 
water bodies. The bottom slope is small and uniform, as is the strength of the 
turbulence, although the stratification is non-uniform. The model differs from that 
described by Salmun et al. (1991) in two fundamental ways. Firstly, recognizing that 
the flow field consists of two distinct components, at the outset we decompose the 
velocity and density fields into two components: a barotropic component and a 
baroclinic component, with the property that the integral over the depth of the 
turbulent boundary-layer thickness h of the baroclinic components vanishes. 
Secondly, rather than an arbitrary perturbation parameter, we use the naturally 
occurring small parameter A as the perturbation parameter, where A is defined as the 
ratio of the turbulent boundary-layer thickness h, measured perpendicular to the 
slope, divided by the lengthscale L,  the alongslope scale over which the background 
stratification changes. 

As we show below, a formal expansion of the flow variables in the parameter A 
enables an analytic solution to the flow to be found. This approach has the advantage 
of defining a number of possible flow regimes, one of which is the regime considered 
by Salmun et al. (1991) in which inertia is important. We show, however, that at  least 
for smaller bodies inertia terms are small compared to the viscous and buoyancy 
terms. In this regime a divergent barotropic flow can be set up in the boundary layer 
which leads to a net discharge or exchange flow with the interior, hence forcing 
changes in the interior density stratification. 

2. Boundary flux 
Consider the flow induced by a longitudinal density gradient formed by boundary 

mixing along a sloping wall as shown in figure 2. The momentum and species 
equations under the Boussinesq approximation for steady flow in the benthic 
boundary layer are 

pgsinO+p,s {$ -+- E} , po u-+w- =--- ap { E g} ax 
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PICURE 2. Definition of coordinates and parameters for a model of the flow along the sloping 
turbulent boundary layer. 

where u and w are the mean velocities in the x- and z-directions, P is the mean 
pressure, po is the average mean density, p is the mean density anomaly above po and 
B is the turbulent exchange coefficient, assumed the same for mass and momentum. 

Now eliminating the pressure between (1) and (2) yields the mean vorticity 
equation : 

The mean velocity field is assumed to be made up of two distinct flows : components 
B and 6 describing the discharge flow, and baroclinic components u’ and w’ driven 
by the longitudinal density distribution. Hence let 

u(x,  2) = C(x,  2) +u’(z, 2 )  ; w(x, 2) = 6 ( x ,  2 )  + w/(x,  2) ( 5 )  

with the property I (6) 

Thus from conservation of mass 

(7) dq - = -61, and w’lh = 0. 
dx 

Similarly, the density variation may be divided into two components: the 
longitudinal variation d(x), and the density perturbation p’(2, z )  induced by the flow, 
so that 

Consider now the scales associated with these variables. 
P b ,  2) = 4 4  +p’(x, 4. (8) 

6 - q /h  (9) 

and A - Ap, (10) 
where Ap is the density difference between the two ends of the flow domain. 

aspect ratio 
The flow is confined within the turbulent boundary layer and if we assume that the 

h/L  = A  + 1 (11) 
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g cos 6 aA/ax - po E i33u1/i3z3, (12) 
uf anlax - 8 a2prlaz2, (13) 

and at second order c a A p x  - (alax) ( u y ) .  (14) 
Equation (12) states that the baroclinic velocity field is forced by the longitudinal 
gradient, the resistance to the forcing being internal friction. Equation (13) is the 
classical Taylor ( 1954) assumption underlying longitudinal dispersion and (14) 
assumes that the barotropic volume flux keeps the flow in steady state. 

If we let u’ - u, (15) 

Q - qlh, (16) 
p’ - Sp, (17) 

and f f  - AP, (18) 
then (12)-( 14) imply U - Gre lL ,  (19) 

@ / A p  - Gr A2 (20)  

and q N Or2 A3e, (21) 

(22 )  
SAP h3 where the Grashof number Gr = ~- cos 8. 

p 2 
Equations (3) and (4) can be non-dimensionalized by introducing the new variables 

U‘ = u‘/U, W‘ = A d ,  (23) 
.ii = Gh/q, 6 = AQ,  (24 ) 

A = A / A p ,  (25 )  
P = P’/&% (26) 
x = x/L, (27) 
x = x/h, (28) 

where we have not introduced separate variables to differentiate between physical 
and non-dimensional variables. The non-dimensional forms for (3) and (4) become, 
after substituting ( 5 ) ,  (8), and (23)-(28) : 

ap’ dA 
= -GrAtan0-+GrA2-+- aZ a x  dx 
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and 

dA dA 
Gr2 A23- i- Gr u’ - -k Gr3 A4 

dx dx 

As discussed in $3  below, for lakes A is about lop3 and a perturbation solution in 
small A is thus likely to be successful. However, before this can be done it is necessary 
to order Gr relative to the magnitude of A ,  so that the two-parameter equations 
reduce to a one-parameter system of equations. 

Cormack, Leal & Imberger (1974) assumed Gr = O(1) as A + O .  Taking a regular 
expansion in the small parameter A in (29) and (30) yields to first order 

and 
dAo -+- = 0. 

az3 dx 

As discussed in 51, the density flux in the interior is vanishingly small, thus 
integrating (31) with respect to z between 0 and 1, and setting ap;/az = 0 at z = 0 and 
z = 1 yields, to a good approximation, the simple result 

Similarly 

d2Ao/dx2 = 0. 

d2A,/dx2 = 0. 

(33) 

(34) 

In other words the density gradient is linear with x, the flow is parallel and the 
discharge flow defined in (6) is zero. 

Bejan & Imberger (1979) investigated the case where Gr = O(A-l) but did not 
require (14). Again expanding the variables in powers of A yields at  first order 

U; dAo/dx = a2p&2, (35) 

which requires zero mass flux at  x = 0 and 1. The second-order equation becomes 

On integration with respect to z between 0 and 1 (36) reduces to 

where we have used the conditions wi pi 1; = 0 and the non-dimensional discharge 
(I = J:C0dz. 

Given that uk follows directly from the first-order balance in (32) and pi from (35), 
this yields an equation for Ao. Equation (37) is a generalization of that derived by 
Bejan & Imberger (1979) who did not include the baroclinic flux term, required by 
the inclusion of (14) in the present derivation. Equation (37) clearly shows that a 
perturbation scheme based on the balance in (35) will always retain the longitudinal 
diffusion term and the net discharge Q is balanced by the diffusive flux and the Taylor 
dispersion. 
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By assuming Gr = 0(Av2)  equation (29) yields a balance at leading order between 
inertia, buoyancy and internal friction. Under such a balance the layer thickness is 
limited by the advective acceleration terms and the equations are fully nonlinear. 
However, typical values in lakes discussed in $ 3  below indicate that the inertia terms 
are in fact small compared to the buoyancy terms. 

The magnitudes of Gr and A thus suggest the ordering 

Gr = A-g, (38) 

Gr2A2 = A-l+ co (39) 

and GrA2 = Ai+O (40) 

which yields a discharge so that the advective flux balances the diffusive flux. This 
yields in the limit A + 0 

as required by the nature of the problem for A small. Given (38), (29) and (30) reduce 
to 

and 

Consider a solution where the variables 4, u’, G, w’, A and p’ can be expanded in 
the form 

4 = $b0 +At$l + . . . . (43) 

A-itanO = a (44) 

If we define a new parameter a by 

then substituting expansions of the form of (43) into (41) and (42) leads to the 
following sets of equations at  first and second order: 

‘ dA, ap’ a=-- +a-, a 2  & az (45) 
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The parameter a is determined by the geometry and if a is of order one, then the 
balance in (12) becomes 

an a321.1 

aZ ax az3 
gsin8--gcosO- -po- .  (49) 

At order A,, the solution of (45) and (46) is (cf. Phillips 1970) 

sinhB(z- 1) sin/2z--sinhPzsin/?(z- 1) 

p” 

cosh B(z - 1) cos/3z - cosh pz cos B(z - 1) /?( sinh p + sin p) ( z  -+) 

B” 
+ 

B” 
where /3” = - dA,/dx. (52)  

u; = -(dAo/dx) (~z3-+z2+&z) ,  (53) 
p; = -(dA,/dx)2(&~5-&4+&~3-&), (54) 

In the limit 01 + 0, the solutions of (45) and (46) are 

where we have assumed that 
u;=o, z = O , l ,  

+;/az = 0, = 0, 1. 

While the boundary condition (55) implies that there will be a stress jump at the 
interface between the turbulent and non-turbulent fluid at z = 1, i t  is realistic in 
confining the baroclinic velocity signature to  the turbulent region. More importantly, 
the use of a stress-free boundary condition leads to only slight modification of the 
coefficient y calculated below. 

Consider now the species equation at second order; then integrating (48) with 
respect to z between 0 and 1 yields 

Using (56), noting that w;p;1: = 0 and substituting (50) and (51) leads to the 
expression 

where 

x (cosh /3(z - 1) cos Pz - cosh pz cos B(z - 1) +/(sinh /I+ sin /3) ( z  -$)} dz. (59) 
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FIGURE 3. The dependence of parameter y on /3 as defined in equations (59) and (52), 

respectively. 

From the field date summarized in table 1 below, it is clear that a < 1, and taking 
the stratification of the form in (60) below, then p < 1 also. In figure 3 we show the 
results of the integrations in (59) for this range. It is clear that y is only a weak 
function of /3 and the magnitude of y is greatest, and hence the discharge q in (58) is 
greatest, when /3+0 and y = -2.7557 x 

Equation (58) yields an expression for p given any distribution for A,. This is quite 
different to the case where Gr = O(l), O(A-') and O(A-2) where the force balance 
determines the distribution of A,. When Gr = O(l ) ,  there is no discharge; when 
Gr = O(A-'), q is fixed by longitudinal diffusion; when Gr = O(A-g), q is fixed by the 
convective flux; and when Gr = O(A-2),  q is fixed by the advective flux (nonlinear). 

In the present case with Gr = O(A4) ,  we can assume without loss of generality that 

A, = 0 for all i 2 1. 

3. Discussion 

stratification of the form 
Consider the case where the stratification can be described by a simple sinusoidal 

A ( X )  = ~cosxx++,  0 < x < 1.  (60) 

p(x) = -&c3ysin2xx; (61) 

Then from (58) ,  the discharge is 

the barotropic flow thus converges towards x = 0.5 and the flow detrains over the 
central portion of the slope where 0.25 < z < 0.75. The velocity component a t  the 
edge of the boundary layer is given by 

where U, is the horizontal velocity in the density-stratified interior. In a bounded 
reservoir or lake, this flow will drive a slow interior circulation, and changes in the 
interior density gradient will thus occur by slow vertical advection. The magnitude 
of these changes can be assessed by an advective interior eddy diffusivity defined by 

w(z = 1)/sin8 = U,, (62) 

wI applaz = K~ azpplazz 



Boundary mixing in strati$ed reservoirs 487 

N 
(rad s-l) 

0.001 
0.001 
0.001 
0.01 
0.01 
0.01 
0.01 

e 
@ad) 
10-3 
10-3 

10-3 

10-2 

10-2 

8 

(m2 s-l) 

10-6 
10-5 

10-5 

10-5 
1 0 - 4  
10-5 
10-6 

h 
(4 
7.2 
3.3 
3.3 

2.6 
2.6 
1.2 
0.55 

A 
7.2 x 10-3 
3.3 x 10-3 
3.3 x 10-3 
2.6 x 10-3 
2.6 x 10-3 
1.2 x 10-3 
5.5 x 10-4 

Qr 

3.7 x lo6 

3.6 x lo6 

1.8 x lo6 

1.8 x 108 

3.6 x 1 0 7  

1.8 x 1 0 7  

1.7 x 107 

Gr Aa 
1.9 x 102 
3.9 x 102 
3.9 x 101 
1.2 x 102 
1.2 x 10' 
2.4 x 10' 
5.4 x 101 

U 

1.2 x 10-2 
1.7 x 
1.7 x 10-l 
2.0 x 
2.0 x 10-1 
2.9 x 10-1 
4.3 x 10-1 

0.10 0.92 9.2 x 7.8 x lo7 6.6 x lo1 3.3 x 
0.10 0.92 9.2 x 7.8 x lo6 6.6 x loo 3.3 x 10-l 

0.10 0.20 2.0 x 8.1 x 10' 3.2 x 10' 7.1 x 10-1 
0.10 10-2 10-5 0.43 4.3 x 10-4 8.2 x 107 1.5 x 101 4.8 x 10-1 

TABLE 1. Required boundary-layer thicknesses for Kl = m2 s-' and I = lo3 m x L.  

or K,  = ( q / J )  (aP/az)la2Plaz2> (63) 

where 1 is the basin width. 
Now from (58) ,  the discharge q in dimensional form is 

3y Gr2 A 3 d 3  sin3 8 
(AP)2 

!I=- 

Note from (64) that if the density gradient were perfectly linear, the discharge q is 
zero and hence KI would be zero. Substituting into (63) and using the definition of 
Grashoff number given in (22) yields 

3yh9 cos2 0 sin3 0 
€31 

K ,  = - 

If the stratification is given by a simple sinusoid of the form in (60), and if we take 
y = -2.7557 x then (65) simplifies to 

N4h9 sin3 0 cos2 8) 
(nc) 

sin2 - , ( €31 
K ,  = 2.04 x 10-5 

where N 2  = ( g / p )  (Ap/L sin 0). Thus in this case the interior diffusivity varies from a 
maximum at z = I& and tends to zero as z + 0 and L. 

Salmun et al. (1991) found from numerical computation a result comparable to 
(66), although their results indicated a variation in the coefficient in the range 
1 x to 3 x As our analysis shows, the coefficient varies weakly with ,8 (figure 
3) and in the vertical as determined by the density gradient. Furthermore, the 
analysis in $2 shows that this result is valid providing that the inertial terms in (29) 
or (41) are small in magnitude compared to the viscous terms. 

As (66) shows, there is a very strong dependence of the effective interior diffusivity 
K ,  on the boundary-layer thickness h. Typical interior diffusivities in lakes or 
reservoirs are of order m2 s-l, while the buoyancy frequency can vary strongly 
over the seasonal stratification cycle or with depth (e.g. Tmberger & Patterson 1990). 
Bottom diffusivities can vary between m2 s-' and lop6 m2 s-l and the slope 8 can 
vary over the range to Tn order to examine the effect of this variability 
in (66), we show in table 1 the values of h required to generate an eff'ective interior 
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diffusivity of K ,  = m2 s-l in a basin with 1 = lo3 m for a range of N ,  8 and e. For 
extremely weak stratifications, the required h is 3-7 m. For the more realistic 
stratification likely to be found in the hypolimnion or thermocline, table 1 indicates 
that h varies between 0.2 and 2 m. 

Table 1 also lists the parameter GrA2 for each case, and for all cases GrA2 > 1,  
implying at first inspection that inertial effects are indeed important. However, 
closer inspection of the velocity profile uI, in (53) reveals that the average magnitude 
of uI, over depth from 0 to 1 is a = 5.2 x 10-3(d~/dx)  - a result confirmed by direct 
measurements of the velocity profile by Imberger (1974). Thus the best estimate of 
the ratio of the nonlinear to viscous terms over the boundary layer is 

implying G r A 2  > 200 before the inertial terms truly become important in the 
boundary-layer dynamics. This criterion is not satisfied for all realistic cases listed in 
table 1, and we conclude that the formulation in (66) can be applied. 

I n  figures 4 and 5 we show examples of microstructure measurements of active 
mixing in the benthic boundary layer of two water bodies : Lago di Lago (Venice) in 
figure 4 and Lake Argyle (Western Australia) in figure 5 .  The two figures show 
temperature, temperature gradient and dissipation estimates (calculated using the 
techniques described in Imberger & Ivey 1991) over the water column where the 
bottom is 0.5 m beyond the bottom of the traces shown. In  Lago di Lago, benthic 
mixing was forced by breaking internal waves with a boundary-layer thickness h of 
about 1 m, the rate of dissipation of turbulent kinetic energy B, = m2 sP3 and 
hence bottom diffusivities (from Fischer et al. 1979) are 6 = 0.06ei h: = 3 x m2 sP1. 
The data in figure 5 are one sample from an extensive field experiment in Lake 
Argyle. Benthic mixing was forced by wind-driven bottom currents and the example 
in figure 5 has a background stratification of N = 0.03 rad s-l, 0 = lo+, a layer 
thickness h = 1.5 m, dissipation = 4 x lop7 m2 sP3, and hence bottom diffusivity 
B = 7 x loP4 m2 s-’. As table 1 indicates, such a parameter range is easily able to 
generate an effective interior diffusivity K ,  = lopE ma s-l and the boundary mixing 
is thus significant in the deep mixing in the lake. 

4. Conclusions 
A perturbation analysis in the small parameter A ,  the aspect ratio of the turbulent 

boundary layer on the slope, shows that the primary force balance in the benthic 
boundary layer is a balance between viscous and buoyancy forces. For an arbitrary 
interior density profile, the solution predicts that a barotropic flow is established 
which is divergent along the slope, leading to a slow exchange between the boundary 
layer and the interior. The circulation thereby established in the interior can lead to 
changes in the interior density gradient which are significant when compared to field 
observations. 

The authors thank S. G. Schladow, K. Zic, H. Salmun and our referees for 
comments on the manuscript. 
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